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A Gaseous Plant Hormone Ethylene: The Signaling Pathway 
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Phytohormone ethylene has profound effects on growth and development in plants. Molecular genetic studies using Arabi- 
dopsis have defined a linear pathway for ethylene signal transduction leading from initial hormone perception to changes in 
gene expression. Ethylene is perceived by a family of ethylene receptor complex at endoplasmic reticulum (ER), which nega- 
tively regulates the ethylene response. Ethylene binding inactivates the receptors and represses the Raf-like kinase CONSTI- 
TUTIVE TRIPLE RESPONSE1 (CTR1) that actively represses ethylene response pathway in the absence of ethylene. 
Consequently, the ETHYLENE INSENSITIVE2 (EIN2), a membrane protein with similarities to Nramp metal ion transporter 
becomes activated and positively regulates the ethylene signaling pathway by transmitting the signal into the nucleus. Finally, 
the nuclear signal initiates the transcriptional cascade via the transcription factors ETHYLENE INSENSITIV3/ETHYLENE 
INSENSITIVE3-LIKE proteins (EIN3/EILs). This review will summarize the up-to-date understanding of ethylene signal transduc- 
tion, in aiming to illustrate how challenges in hormone biology have been resolved through the power of molecular genetics 
and to provide references for interested readers searching for further information. 
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HISTORY OF ETHYLENE RESEARCH 

To survive in a challenging environment, every organism 
needs the ability to sense and react in an appropriate man- 
ner against every changing condition. Being a sessile organ- 
ism, plants extremely rely on properly integrating all those 
internal and external signals so that they can make their 
adequate responses. One of the main ways plants can dis- 
seminate a reaction is through the use of ph~ohormones. 
Indeed, one of the biggest challenges in plant biology is to 
understand the mechanisms of hormone action, that is, the 
perception, signal transduction and cascade which leads to 
the response. 

Ethylene (C2H4) is a gaseous plant hormone. Ethylene trig- 
gers fruit ripening in climacteric fruits, influences senescence 
and abscission of plant organs (Abe/es et al., 1992). Ethylene 
has also been implicated in developmental processes such 
as seed germination, cell elongation, root formation, sex 
determination, pollination and flowering, and regulates 
plant responses to biotic and abiotic stresses as well (Abeles 
et al., 1992). 

In 1998, Nobel Prize in Physiology or Medicine was 
awarded for the discovery of nitric oxide as a signaling mol- 
ecule in animals. The Nobel press released the announce- 
ment that "Nitric oxide is a gas that is produced by one cell, 
penetrates through membranes and regulates the function 
of another cell which represents an entirely new principle 
for signaling in biological systems". In contrary to what the 
Nobel assembly declared, ethylene was identified as the first 
gaseous hormone by a Russian graduate student Dimitry 
Neljubow in 1901, more than a hundred ye~ars ago before 
the Nobel Prize was awarded (Kende, 1998). As a graduate 
student, Neljubow discovered that illumination gas (coal gas) 
was responsible for reduced stem elongation, increased lat- 
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eral growth and abnormal horizontal growth in etiolated pea 
seedlings and identified ethylene as a biologically active gas 
which causes this response. Later in 1910, H. H. Cousins 
recognized that oranges stored near bananas ripened faster 
than the oranges stored elsewhere. Even though orange is 
presently known as a nondimacteric fruit which does not 
produce as much ethylene as climacteric fruit, this was the 
first indication that ethylene is naturally produced from 
plant tissues. It was R. Gane who first isolated ethylene from 
plant (Gane, 1934). He analyzed volatiles emitted by 60 Ibs 
of ripening apples, showing direct chemical proof that plant 
tissues endogenously synthesize ethylene, thus settling the 
stage to investigate the function of ethylene as a plant hor- 
mone. A breakthrough in the ethylene research came with 
the invention of gas chromatography (Burg and Stolwijk, 
1959). ]-he ability to analyze trace amount of ethylene 
opened the way to rediscover the significance of this growth 
regulator in various physiological responses. By 1980s, tre- 
mendous progresses were made in discovering the biosyn- 
thetic pathway. The whole pathway was biochemically 
dissected, genes encoding the biosynthetic enzymes have 
been cloned in numerous species, and their regulations are 
extensively studied (Yang and Hoffman, 1984; Kende, 1993; 
Lee et al., 1999; Park et al., 2001). However, little was 
known about the perception and signal transduction path- 
way of ethylene. 

In the middle of 1980s, Arabidopsis was introduced as a 
model system in plant biology and the power of the new 
genetic system opened another chapter for ethylene 
research. The primary way in which the ethylene response 
mutants have been isolated is using the ~ response' 
phenotype, which includes the three effects of ethylene on 
etiolated seedlings: shortened/thickened hypocotyl, inhibi- 
tion of root elongation, and exaggerated apical hook (Guz- 
man and Ecker, 1990). Numerous mutants which render 
insensitivity to ethylene or display constitutive ethylene 
response have been identified from genetic screenings uti- 
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Figure 1. Currant model of the ethylene signal transduction pathway. In the absence of ethylene, formation of the ER-Iocalized signaling com- 
plex, mediated by direct interaction of the histidine kinase domain of the receptors and N-terminal domain of CTR1, actively suppresses the 
downstream signal through CTRI Ser/Thr kinase activity. With the active signaling complex, the signaling activity of EIN2 is repressed and the 
constitutively expressed EIN3 transcription factor is targeted for degradation through a ubiquitin-mediated proteasome pathway via the recog- 
nition of two F-box proteins, EBFI and EBF2. When exposed to ethylene, the ligancl-receptor binding leads to a conformational change in the 
receptor-CTR1 complex, resulting in the inactivation of CTRI. Without the ER membrane-bound CI-RI activity, EIN2 is derepressed and trans- 
mils the signal into the nucleus, which prevents EIN3 from degradation. The accumulated EIN3 directly binds to the PEREs (Primary Ethylene 
Responsive Element) located on the promoters of ERF1 and other primary target genes. In cascade, ERF1 turns on the secondary targets through 
binding to the GCC box elements. Ethylene signal leads to EBF1/2 accumulation, providing negative feedback loop on EIN3 activity. EIN5 is 
likely antagonizing the negative feedback regulation on EIN3 by promoting EBF1/2 mRNA decay, which consequently sets back to a ground 
state that allows the accumulation of El N3 protein in response to ethylene. The dotted lines represent regulatory steps in which a direct physical 
link between upstream and downstream components has yet to be demonstrated. 

lizing triple responses (Bleecker et al., 1988; Guzman and 
Ecker, 1990; van der Straeten et al., 1993; Roman et al., 
1995). Further genetic and molecular analyses of these 
mutants and combined biochemical studies on isolated mol- 
ecules have uncovered the current linear pathway for ethyl- 
ene signal transduction that is defined from the initial 
hormone perception at the endoplasmic reticulum (ER) 
membrane to the changes in gene expressions via transcrip- 
tional cascades (Fig. 1 ). 

ETHYLENE PERCEPTION: THE ETHYLENE 
RECEPTOR FAMILY 

Ethylene is perceived by a family of five membrane- 
bound receptors, ETR1, ETR2, ERS1, ERS2 and EIN4, that 

share similarity with bacterial two-component histidine 
kinases (Chang et al., 1993; Hua et al., 1995, 1998; Sakai et 
al., 1998; Alonso et al., 2003). The most conserved portion 
among the ethylene receptor family members is the hydro- 
phobic transmembrane domain at the amino-terminal end. 
This domain, when expressed in yeast, was found to be nec- 
essary and sufficient for high-affinity binding to ethylene 
(Schaller and Bleecker, 1995). In the case of ETRI, the func- 
tional unit for ethylene perception was found to be a dimer 
mediated in part by a cysteine residue at the amino-termi- 
nus that is capable of forming disulfide bonds (Schaller et al., 
1995). In addition to the ethylene binding feature, the 
amino-terminal region, which includes the transmembrane 
region and the GAF-related domain with unknown function, 
is shown to play a role in targeting and retention of the 
receptor in ER membrane system (Chen et al., 2002). The 
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carboxy-terminus of the ethylene receptor family members 
seems more likely involved in signal output. It confers strong 
homology with histidine kinase domain, and in ETR1, ETR2 
and EIN4, it is followed by a receiver domain of response 
regulator (Hua et al., 1998). 

The five members of ethylene receptor can be divided 
into two subfamilies based on the sequence and structural 
similarities (Hua et al., 1998). The first subfamily includes 
ETRt and ERS1, and the second subfamily includes ETR2, 
EIN4 and ERS2. All five proteins contain hydrophobic trans- 
membrane domains in the amino-terminus, where the eth- 
ylene binding site has been localized, followed by the 
histidine kinase domain. However, in contrast to the mem- 
bers of subfamily I in which the essential residues for histi- 
dine kinase activity are completely conserved, the members 
of subfamily II lack several or all of the canonical functional 
motifs of histidine kinases, and possess an extended amino- 
terminus containing a predicted transmembrane domain 
(Hua et al., 1998). 

While it was initially thought that the receptors were 
either redundant or had unique roles, the reality may be 
someplace in between. The receptors seem to have some 
amount of complete functional redundancy in that single 
knock-out mutant of any receptor was still able to respond 
to ethylene (Hua and Meyerowitz, 1998). The receptor 
genes are ubiquitously expressed with widely overlapping 
expression patterns (Hua et al., 1998) and the proteins are 
located in ER membranes (Chen et al., 2002; Gao et al., 
2003). Likewise, when expressed in yeast, all receptor iso- 
forms displayed high-affinity ethylene binding with similar 
binding activity per unit expressed protein (O'Malley et al., 
2005). However, subfamily I seems to ptay a much larger 
role, as the El-R1 and ER51 double null mutant had a more 
severe phenotype than the subfamily II triple null mutant 
(Zhao et al., 2002; Wang et al., 2003; Hall and Bleecker, 
2003; Qu et al., 2007). Subfamily II receptors expressed 
under the control of a subfamily I promoter were unable to 
alleviate this phenotype, supporting the unique role of the 
subfamily I members (Wang et al., 2003). 

The originally identified ethylene receptor mutants for 
ETR1, ETR2 and EIN4 were caused by an amino acid substi- 
tution within the ethylene binding amino-terminal domain 
which prevents ethylene binding (Chang et al., 19931 
Schaller and Bleecker, 19951 Hua et al., 1998; Sakai et al., 
1998). Because the found mutants were all genetically dom- 
inant alleles, these observations, raised the question weather 
the dominant ethylene insensitivity arose from constitutively 
active mutant ETR1 proteins (a gain-of-function) or from 
dominant negative effect. The answer came from the isola- 
tion and genetic studies of loss-of-function alleles of the 
receptors (Hua and Meyerowitz, 1998). Each loss-of-func- 
tion mutants, isolated by intragenic reversion of dominant 
mutations or identification of a T-DNA insertion, was still 
able to respond to ethylene implying the functional redun- 
dancy among the receptors. Moreover, homozygous triple 
and quadruple loss-of-function mutants displayed constitu- 
tive ethylene phenotype rather than showing ethylene 
insensitivity, suggesting that the receptors are negative regu- 
lators. These results also tell us that the receptors are active 
in the absence of hormone to repress ethylene signaling 

whereas binding of ethylene inactivates the receptors, 
release the repression of the pathway, consequently leading 
to the ethylene response (Hua and Meyerowitz, 1998). 
Consistent with the hypothesis, based on these results, the 
triple and quadruple mutants, which have less number of 
ethylene receptors, could react with higher sensitivity to eth- 
ylene because less ethylene is needed to inactivate the 
receptors (Hua and Meyerowitz, 1998). 

As first proposed by Burg and Burg (1967), high affinity 
binding of ethylene to the receptor requires a transition 
metal, the copper ion. Rodrigues et al. (1999) demonstrated 
the interaction of copper ion with yeast expressed ETR1 
protein and furthermore, showed that this interaction is 
mediated by Cys65 that is located at the conserved hydro- 
phobic amino-terminal transmembrane domain. The role of 
copper in ethylene perception was further confirmed in 
plant by the cloning of RAN1 (RESPONSE TO ANTAGONIST1) 
gene (Hirayama et al., 1999). ran1-1 and ran1-2 was iso- 
lated by a screen for mutants showing ethylene response to 
an ethylene antagonist trans-cyclooctene. The RAN1 prod- 
uct has high similarity to copper transporting P-type ATPases, 
and was shown to rescue a copper transport defect in yeast 
(Hirayama et al., 1999). RAN1-1 and RAN1-2 proteins have 
residual copper transport function in yeast, suggesting that 
reduced copper levels can lead to alter the ligand specificity 
of ethylene binding domain, which is therefore no longer 
antagonized by cyclooctene. Co-suppression of RAN1 and 
loss-of-function mutant of RAN1 resulted in a constitutive 
ethylene response phenotype without ethylene (Hirayama 
et al., 1999; Woeste and Kieber, 2000), indicating that cop- 
per is not only required for proper conformation of ethylene 
binding domain but also for signaling output of the ethylene 
receptors. 

Based oil the structural similarity of the ethylene receptors 
to bacterial two-component signaling systems, it has been 
suggested that the ethylene receptors could function similar 
to these bacterial sensor proteins by modulating the histi- 
dine kinase activity after ethylene binding. Indeed, ETR1 
autophosphorylates in vitro on its conserved histidine resi- 
due (Gamble et al., 1998). However, the involvement of his- 
tidine kinase activity with a phosphorelay event is still 
questionable. Mutations that eliminate histidine kinase activ- 
ity in vitro as well as removal of the entire histidine kinase 
domain do not appear to disrupt in vivo functions of the 
ethylene receptors (Gamble et al., 2002). An independent 
line of evidence ruling out the requirement of a histidine 
Idnase activity for the ETR1 signaling comes fi'om the study 
using etrlersl double loss-of-function mutant, in which the 
ethylene receptors with conserved active histidine kinase 
domain are depleted (Wang et al., 2003). Transformation of 
etrlersl mutant with an inactive kinase domain containing 
ETR1 genomic clone restored a number of ethylene respon- 
siveness, which again supports the idea that canonical histi- 
dine kinase activity is not absolutely required for ethylene 
receptor signaling. 

Recently, REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1), 
an evolutionarily conserved membrane protein with unknown 
biochemical activity was identified by a genetic screen for 
suppressors of the weak ethylene-insensitive mutant err1-2 
(Resnick et al., 2006). Genetic experiment suggest that RTE1 
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act as a negative regulator in ethylene response and lies at 
or upstream of ETR1. Despite the involvement of modulat- 
ing ETRI's activity, the connection between RTE1 and ETR, 
and the role in ethylene signaling needs to be further clari- 
fied. 

EARLY SIGNALING MODULE: THE 
RAF-LIKE KINASE CTR1 

A screen for Arabidopsis plants showing a constitutive 
response to ethylene yielded several mutants, all of which 
were overproducers of ethylene except for the ctrl-1 (Kie- 
ber et al., 1993). Genetic analysis located CTR1 down- 
stream of the ethylene receptors (Kieber et al., 1993). 
Because of the recessive nature of ctrl-1 mutant, and the 
constitutive ethylene response phenotype, CTR1 was sug- 
gested to be a negative regulator for downstream signaling 
flow. When cloned, CTR1 gene encoded a kinase with an 
amino-terminal domain of unknown function, and a car- 
boxy-terminal kinase domain that possess high homology to 
the Raf-family of Ser/Ehr kinases (MAPKKK) (Kieber et al., 
1993). 

At the time ethylene receptors were cloned, it was quite 
puzzling having a eukaryotic signaling system (a MAP kinase 
module) and a prokaryotic signaling system (two-compo- 
nent systems) in the same pathway. Several examples of 
pathways came out later in yeast where a histidine kinase 
mediated phospho-relay initiates the MAP kinase pathway 
through the interaction of a response regulator (Posas et al., 
1996; Shieh et al., 1997; Buck et al., 2001), which led to 
speculate that the ethylene signaling pathway may be very 
similar to those pathways. However, no intermediate com- 
ponents have been identified yet, which connect the ethyl- 
ene receptors and the CTR1 kinase. Instead, the physical 
interaction between ETR1, ERS1 and CTR1 was demon- 
strated using yeast-two hybrid assay and pull down experi- 
ment (Clark et al., 1998), suggesting that the ethylene 
receptor may modulate the activity of CTR1 directly. Frac- 
tionation study and co-purification of ETR1 with affinity 
purified CTR1 from the ER membrane fraction demon- 
strated that CTR1 localize to the ER membrane and also 
supported the in vivo association between ETR1 and CTR1 
(Gao et al., 2003). The ER localization of CTR1 was depen- 
dent on ethylene receptor since double and triple loss-of- 
function receptor mutants resulted in reduced levels of ER- 
associated CTR1. But ethylene binding to the receptors did 
not affect the interaction between the receptor and CTR1 
nor their subcellular localization. CTR1 interacts to the car- 
boxy-terminal half of ETR1 through the amino-terminal 
domain. However, substantial loss of the ER-assoicated 
CTR1 in a triple mutant of subfamily II (etr2/ers2/ein4) 
which lack the canonical histidine kinase residues suggests 
that the histidine kinase activity is not required for the inter- 
action (Gao et al., 2003). 

So how does CTR1 repress the downstream ethylene sig- 
naling? Work with purified recombinant CTR1 protein has 
shown that CTR1 has intrinsic Ser/Thr protein kinase activ- 
ity while CTRI-1 protein, in which the conserved residue 
within the kinase catalytic domain is altered, possesses no in 

vitro kinase activity (Huang et al., 2003). Together with the 
loss-of-function phenotype of ctrl-1 mutant that carries 
mutation in the kinase domain (Kieber et al., 1993), these 
results imply that the importance of kinase activity in sup- 
pressing the ethylene responses. Besides the kinase activity, 
localization of CTR1 to the ER seems also required for the 
CTR1 function. A missense mutation in the amino-terminal 
of CTR1 (ctrl-8) completely disrupted the interaction with 
ETR1, which resulted in redistribution of CTR1 proteins 
from ER membrane to cytosol (Huang et al., 2003). Even 
with the intact kinase activity, ctr l-8 mutant showed severe 
constitutive ethylene phenotype which suggests that the 
association with receptor is also required for CTR1 func- 
tion. Taken together, current understanding tells us that the 
function of CTR1 depends on both its kinase activity and the 
association with ethylene receptors in the ER membrane. 
1-he CTR1 signaling complex is inactivated, possibly by a 
conformational change transmitted through the receptors 
and releases the downstream ethylene signaling (Huang et 
al., 2003). 

While MAP kinase pathway is presumed to be down- 
stream of CTR1, none of the MAP kinase components were 
identified in exhaustive mutant screens for ethylene 
response mutants. A full ten years after the cloning of CTR1, 
two MAP kinases, SIMK and MMK3, and one MAPKK, 
SIMKK were found to be activated in Medicago in response 
to ACC (Ouaked et al., 2003). SIMKK, when overex- 
pressed, gave a constitutive activation of MPK6, an Arabi- 
dopsis homolog of SIMK, and also shows an apparent 
constitutive ethylene response phenotype in the absence of 
ethylene. This is somewhat surprising, and quite controver- 
sial, as CTR1 is a negative regulator of ethylene responses, 
and is inactivated by ethylene (Kieber et al., 1993), whereas 
SIMKK acts as a positive regulator and is activated by ethyl- 
ene. In addition, a Ioss-ol'-function mutant of MPK6 does 
not show any ethylene related phenotype (Ecker, 2004; 
Menke et al., 2004). Moreover, MPK6 is demonstrated to 
play a role in stress induced ethylene production, in a sepa- 
rate study (Liu and Zhang, 2004). Therefore, the relation- 
ship between CTR1 and SIMKK needs to be re-examined. 

Several observations indicate that the ethylene signal 
transduction pathway is not completely depenclent on the 
activity of CTR1. Even completely null, ctrl  loss-of-function 
mutants are still capable of displaying some ethylene 
responsiveness (Larsen and Chang, 2001). Moreover, loss- 
of-function mutation in four ethylene receptors shows more 
severe phenotype than the ctr l  loss-of-function mutant 
(Hua and Meyerowitz, 1998) suggesting the possible partial 
redundancy with a CTRl-like protein or alternatively, the 
presence of an additional branch of ethylene signaling. 

EIN2: AN NRAMP-LIKE MEMBRANE PROTEIN 

Genetic analysis of ethylene signaling mutants has shown 
that EIN2 is required for propagating the signal from CTR1 
to the nucleus. 24 out of 25 different alleles of ein2 showed 
complete ethylene insensitivity suggesting that EIN2 is an 
essential positive regulator in ethylene signaling (Alonso et 
al., 1999). The fact that ein2 mutants were also isolated in 
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screens for different hormone responses (Su and Howell, 
1992; Eujita and Syono, 1996; Beaudoin et a[., 2000; Ghas- 
semian et al., 2000) and delayed senescence (Oh et al., 
1997) implies that EIN2 mediates cross-talk of multiple hor- 
mone signaling and stress response pathways. 

When cloned, EIN2 was found to encode a novel integral 
membrane protein which shares homology with eukaryotic 
Nramp metal ion transporter (Alonso et al., 1999). While 
the transmembrane amino-terminal region exhibit strong 
similarity to a cation transporter, the extended carboxy-ter- 
minus consists of a novel sequence containing a coiled-coil 
motif, implying that this region may be a site for protein-pro- 
tein interaction. In spite of the strong homology, EIN2 lacks 
detectable metal transport activity (Alonso et al., 1999). 
Overexpression of the carboxy-terminal domain in an EIt'42 
null background provides constitutive activation of number 
of ethylene responses mostly in light grown plants, but not 
in dark grown seedlings. These results led to a hypothesis 
that the carboxy-terminal domain acts in transducing the sig- 
nal to downstream components, while the amino-terminal 
domain is required for sensing the upstream ethylene signal. 
Although this implies the role of EIN2 in ethylene signal 
transduction, the mechanism by which EIN2 receives the 
signal and how it transduces to the downstream effectors 
remain unknown. 

NUCLEAR EVENTS: TRANSCRIPTIONAL 
CASCADE 

In many cases, ethylene responses involve changes in 
gene expression. The first direct evidence of transcriptional 
control came out with cloning of EIN3 encoding a nuclear- 
localized DNA binding protein (Chao et al., 1997). Loss-of- 
function mutations in EIN3 result in ethylene insensitive 
phenotype indicating that EIN3 is a positive regulator of eth- 
ylene pathway. In Arabidopsis, EIi'q3 belongs to a multigene 
family that contains five additional EIN3-1ike proteins (ElLs). 
Overexpression of EIN3 and the most closely related protein 
ElL1 in wild type or ein2 mutant caused constitutive activa- 
tion of ethylene response, suggesting their role as a positive 
regulator in ethylene signaling pathway (Chao et al., 1997). 
Isolation of ell1 in a screen for weak ethylene insensitive 
mutant supports the role of ElLs in ethylene signal transduc- 
tion as well. Indeed, ein3eill double mutant conferred 
almost complete ethylene insensitivity indistinguishable from 
ein2-5, indicating that EIN3 and ElL1 are the major contrib- 
utors for ethylene signaling (Alonso et al., 2003). 

A unique aspect of EIN3/EIL regulation seems to be at the 
protein level rather than RNA. None of the EIi',!3/EIL genes 
identified so far has been shown to response to ethylene at 
mRNA levels, but protein levels rapidly rise (Guo and Ecker, 
2003; Potuschak et al., 2003; Yanagisawa et al., 2003; 
Gagne et al., 2004). As it turns out, EtN3 Fotei~7 is con- 
stantly made, and then targeted for degradation through 
proteasome-mediated pathway by an interaction with two 
F-box proteins, EBF1 and EBF2 (Guo and Ecker, 2003; 
Potuschak et al., 2003; Gagne et al., 2004). Single knock- 
outs of the EBF7 or EBF2 gene conferred a slight hypersensi- 
tivity to ethylene while overexpression resulted in plants 

insensitive to ethylene. The accumulation of EIN3 protein in 
double knockout mutant lacking EBF1 and EBF2 were 
above normal amounts, thus exhibiting constitutive ethylene 
response phenotype (Guo and Ecker, 2003; Potuschak et 
al., 2003) or showing severe growth inhibition in a different 
study (Gagne et al., 2004). Altogether, these results indicate 
that a ubiquitin-mediated proteasome pathway negatively 
regulates ethylene responses by targeting EIN3 for degrada- 
tion. Although it is clear that EIN3 function is regulated by 
EBF1 and EBF2, how ethylene regulates these factors to pre- 
vent EIN3 from degradation is not known. The substrate rec- 
ognition of EBFs can be altered by modification of EIN3 as it 
occurs in many other cullin-based E3 ligases (Deshaies, 
1999; Cardozo and Pagano, 2004) or, alternatively, ethylene 
can modify the EBFs or associated proteins in the ubiquiti- 
nation complex rather than the substrate as is the case in 
auxin signaling (Dharmasiri et al., 2005). 

While EBFs negatively regulate EIN3 protein accumula- 
tion, the accumulated EIN3 protein conversely regulates 
EBF1/2 mRNA level providing a feedback-loop to control the 
EIN3 protein level (Potuschak et al., 2003). Recently, the 
gene encoding EIN5/AIN1 (for ACC-INSENSITIVE1), which 
was originally isolated in a screen for reduce ethylene 
responsiveness in the presence of ethylene (Roman et al., 
1995), was identified. Genetic study revealed that EIN5/ 
AIN1 is required for ethylene responses and was placed 
downstream of C]-R1 but upstream of EBF1/2 (Olmedo et 
al., 2006). Interestingly, the mRNA levels for EBF1/2 were 
increased in einS/ainl mutant, which consequently resulted 
in instability of EIN3 protein and reduced ethylene sensitiv- 
ity (Olmedo et al., 2006; Potuschak et al., 2006). These 
findings suggest that EIN5 play a role to antagonize the neg- 
ative feedback regulation on EIN3 by accelerating the EBFT/ 
2 mRNA decay, thus resulting accumulation of EIN3 protein 
to trigger ethylene response (Olmedo et al., 2006). EIi'45/ 
AIi'4~ was allelic to XRI',I4, previously identified as a gene 
encoding cytoplasmic 5' ~ 3' exoribonuclease. However, it 
seems more likely that XRN4 modulates EBF1/2 in an indi- 
rect way as the turnover rate of EBF1/2 mRNA was not 
affected in ein5/ainl mutant (Potuschack et al., 2006). Even 
though XRN4 has been found to play a role in miRNA- 
dependent mRNA decay and gene silencing (Souret et al., 
2004), XRN4 more likely regulates EBF1/2 mRNA levels by a 
distinct mechanism, since the level of EBF1/2 does not seem 
to be affected in other mutants of RISC-based RNA silencing 
(Potuschak et al., 2006). The exact mechanism how XRN4 
regulates the negative feedback loop to equilibrate the 
EIN3/EIL proteins will be another important issue in the 
sense that slight changes in the levels of EIN3/EIL proteins 
can provide significant impact on the signal flux to down- 
stream nuclear events. 

While it is clear that EIN3 and at least some of the ElLs 
may act as transcriptional regulators of ethylene responses, 
the direct evidence for EIN3/EILs rote as a transcription fac- 
tor came out in further studies searching for target promot- 
ers of these proteins. Solano et al. (1998) discovered that 
EIN3 as well as EILland ElL2 bind as a homodimer to the 
specific ERF1 upstream sequence that has similarity to a pre- 
viously identified primary ethylene response-element (PERIl). 
In addition, EIN3 is shown to be necessary and sufficient to 
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activate ERF1 gene expression. ERF1 belongs to a large fam- 
ily of plant-specific transcription factors (Ohme-Takagi and 
Shinshi, 1995) referred to as ethylene-response element 
binding proteins (EREBPs) which are capable of binding to a 
secondary ethylene-response element known as GCC-box 
found in the promoters of several ethylene- and pathogen- 
induced genes (Solano et al., 1998). Consistently, overexpres- 
sion of ERF1 constitutively activates subsets of GCC-box- 
containing target genes and ethylene phenotypes suggesting 
that ERF1, in turn, is responsible for the modulation of sec- 
ondary ethylene responsive genes and consequently regu- 
lates one branch of the ethylene response pathway 
downstream of EIN3 (Solano et al., 1998). 

Considering the result that ein3eill double mutant exhib- 
its almost complete ethylene insensitivity, the transcriptional 
regulation seems to play much larger role in performing eth- 
ylene responses. Efforts have been made to discover the 
ethylene regulated gene expression in different processes 
and in different tissues (Zegzouti et al., 1999; Trentmann, 
2000). The use of various techniques including cDNA- 
amplified fragment length polymorphism (AFLP), cDNA 
microarray and Affymetrix gene array uncovered broad 
range of ethylene regulated genes at the whole plant level 
(Alonso et al., 2003; de Paepe et al., 2004). Further genome- 
wide analyses utilizing genetic resources related to ethylene 
signaling and concentrating on specific tissue or cell types 
will provide us better understandings on unique ethylene 
responses as well as the ethylene's role in co-ordinated pro- 
cesses with other signaling pathways. 

CONCLUDING REMARKS 

Current research on ethylene signal transduction pathway 
exemplifies a linear signal transduction pathway, which con- 
sists of the four main modules: a phosphotransfer relay of 
bacterial two-component system and MAPKKK, an EIN2- 
based unit, a ubiquitin-mediated protein degradation com- 
ponent, and a transcriptional cascade. Although the basic 
framework for the ethylene signaling pathway is emerging, 
there are many questions that remain to be resolved. The 
biochemical properties of the known signaling components 
need to be further investigated and reconciled with the 
behavior of the ethylene signal transduction system in 
planta. Likewise, how the signal impacts a plant to a specific 
ethylene response needs to determined. Recent advances in 
the global genomics and proteomics area should allow for 
targeted studies that will provide new insights into molecular 
and biochemical responses of plants. 

The notion that the configuration of ethylene signaling 
pathway is unique in comparison to other hormone signal- 
ing pathways identified in plants has led to a question on 
how ethylene signaling has been evolved. Interestingly, 
recent sequencing of Physcomitrella patens (Joint Genome 
Insitute, unpublished) reveals full array of ethylene signaling 
components, including ETRs, CTR1, EIN2, and EIN3, sug- 
gesting that the ethylene signal transduction pathway identi- 
fied from Arabidopsis is conserved throughout plant 
kingdom. Since the roles of ethylene signaling in moss have 
been reported (Rohwer and Bopp, 1985; Fujiwara and Tohe, 

2002), a comparative study on ethylene physiology and sig- 
nal transduction will provide evolutionary perspectives on 
the first gaseous hormone ethylene. 
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